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Dissipation-Driven Phase Transition in Two-Dimensional Josephson Arrays
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We analyze the interplay of dissipative and quantum effects in the proximity of a quantum phase
transition. The prototypical system is a resistively shunted two-dimensional Josephson junction array,
studied by means of an advanced Fourier path-integral Monte Carlo algorithm. The reentrant
superconducting-to-normal phase transition driven by quantum fluctuations, recently discovered in the
limit of infinite shunt resistance, persists for moderate dissipation strength but disappears in the limit of
small resistance. For large quantum coupling our numerical results show that, beyond a critical dissipation
strength, the superconducting phase is always stabilized at sufficiently low temperature. Our phase
diagram explains recent experimental findings.
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Dissipation due to coupling with the surrounding envi-
ronment [1] is an unavoidable effect accompanying the
operation of any microscopic or mesoscopic quantum de-
vice. The knowledge of the influence of dissipative effects
on quantum coherence and quantum phase transitions
(QPT) is therefore essential to assess the reliability of
such devices in performing tasks which strongly depend
on the possibility to maintain entanglement (phase coher-
ence), e.g., in quantum computation. Among the quantum
devices that have already found wide application, many are
based on a collection of regularly arranged or single small
Josephson junctions [2,3]. These are also among the can-
didates for the physical implementation of the so-called
qubits [4].

Josephson junction arrays (JJA), are prototypical sys-
tems displaying a quantum phase transition with a control
parameter tuning the strength of quantum fluctuations.
This has become progressively clear after it was pointed
out [5] in the late 1970s that the charging energy of
Josephson-coupled superconducting grains could lead to
the quenching of the collective superconducting phase.
Since then, several studies [2,3] have been devoted to
characterizing the superconductor-normal (SN) transition
in JJA. Among the systems studied, the two-dimensional
(2D) ones are the most interesting as no true long-range
order is possible at finite temperature while a genuine QPT
occurs at T � 0 [6]; moreover, 2D samples can be fabri-
cated in a controlled way and experimentally characterized
[7–9].

The main effect of dissipation in JJA is that of quenching
the quantum fluctuations of the phase variables (thereby
enhancing those of the conjugate charges) thus stabilizing
the S phase [10–16]. This has had ingenious experimental
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confirmations, e.g., in a JJA coupled with a 2D electron gas
substrate that allows one to tune the dissipation strength
[8], as well as in identical JJA with different built-in Cr
shunt resistors [9].

In this Letter we use a Fourier path-integral Monte Carlo
(PIMC) approach to analyze the competition between dis-
sipation and quantum fluctuations in JJA, for strong quan-
tum coupling and in proximity of the QPT. In particular, we
study the phase diagram as a function of temperature,
quantum coupling, and dissipation. We show how a large
enough dissipation leads to the disappearance of the zero-
temperature QPT, as well as of the reentrant low-
temperature behavior displayed in the limit of large shunt
resistance [17]. The phase diagram we obtain is in remark-
able agreement with the experimental one. Concerning the
reentrance, we can explain the two distinct behaviors found
in experiments; indeed, a nonmonotonic (i.e., reentrant)
low-temperature behavior of the array resistance has been
observed in unshunted JJA [7], but not in shunted ones [9].

JJA are essentially described by the quantum XY model,
whose coordinates and momenta correspond to the wave-
function phases ’̂i and the net Cooper-pair number
(charge) n̂i, respectively, of superconducting islands ar-
ranged on a lattice
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where �’̂i; n̂j� � i�ij and d runs over the z nearest-
neighbor displacements. The Josephson energy EJ sets
the energy scale, making it convenient to use the dimen-
sionless temperature t � T=EJ, while the charging energy
involves the capacitance matrix Cij � C	���ij , with
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FIG. 1 (color online). Phase diagram for the square-lattice JJA
with � � 0:01 for increasing values of the dissipation strength
� � RQ=RS � 0 (diamonds), 0.15, 0.25, 0.4, 0.45, and 0.5
(circles, from left to right). Inset: Trotter- and size-extrapolated
helicity modulus ��g; t� for � � 0:15, at t � 0:2 and t � 0:05.
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	���ij � �z�ij �
P

d�i;j�d� � ��ij, including the mutual
capacitance C and the self-capacitance C0 � �C; in the
experimental samples C is typically dominant [7,9], i.e.,
�	 1. We consider here a square lattice, z � 4.

In the classical limit (large C) the charging term is
thermodynamically irrelevant and the SN transition is a
Berezinskii-Kosterlitz-Thouless (BKT) one [18], leading
from a high-T disordered phase to a low-T quasiordered
phase at tc � 0:892 [19]. The S phase is weakened [3] by
the quantum fluctuations of the phase when the character-
istic charging energy EC � �2e�2=2C is comparable to the
Josephson energy EJ, i.e., when the quantum coupling
constant g �

��������������
EC=EJ

p
is of the order of unity [20]. The

coupling parameter g can be varied in the fabrication of
JJA, and its further increase can finally drive the zero-T
system through a QPT at a critical value gc, numerically
[21] estimated ’ 3:4. Near the QPT the system is charac-
terized by a sharp enhancement of anharmonic quantum
fluctuations [17].

In this Letter we consider normal Ohmic shunt resistors
RS as the source of dissipation, whose strength is measured
by the dimensionless parameter � � RQ=RS, with the re-
sistance quantum RQ � h=�2e�2. It is well known that
dissipation enhances the S phase, i.e., tc�g; �� increases
with �, but reliable results could be obtained only in the
low-coupling regime [10,20]. Mean field, renormalization
group, and variational approaches [12–15] predict the ex-
istence of a critical value �c � 2=z � 1=2 above which the
QPT disappears and for any value of g the system is in the
S phase at sufficiently low temperature. Moreover, it is not
clear whether the reentrant behavior (with the N phase
reappearing at lower T) observed at � � 0 in the proximity
of gc [17] disappears before or at the critical value �c. As
these phenomena involve the strong coupling region where
approximate theories give contradictory answers [22], ac-
curate numerical data are required for a real understanding,
as well as for the interpretation of the experimental data.

To this purpose we employ an efficient Fourier PIMC
technique recently introduced [17,23]. This starts from the
path integral for the effective partition function Z �H
D’ expf�S�’� � SI�’�g, where the action S�’� corre-

sponds to the Hamiltonian (1) and SI�’� is the bilocal
influence action [1,13,24], namely,
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Z 1=t

0
du
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�’id�u��’id�u0��2: (3)

Here u 2 �0; 1=t� is the (dimensionless) ‘‘imaginary
time’’, ’id � ’i � ’i�d, and ��u� � �t2=8sin2��tu� is
the dissipative Ohmic kernel. The strongly nonlocal de-
pendence of the kernel on u� u0 can be easier dealt with in
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the (time) Fourier space (with the Matsubara frequencies
!k � 2�kt and k integer), as the influence action turns into
a local form [13,24], namely, SI�’� �

�
4

P
id

P
k jkjj’idkj

2,
suggesting that dissipation can be easier dealt with in this
way. Therefore, at variance with the standard PIMC algo-
rithm, that samples the variables f’i‘ � ’i�‘=Pt�; ‘ �
1; . . . ; Pg after discretization of the interval u 2 �0; 1=t�
in P slices of size 1=Pt (P being the Trotter number), we
proposed [23] to sample the P Fourier components of ’i‘.
Choosing P � 2M� 1 one can write

’i‘ � �’i � 2
XM
k�1

	
’�R�

ik cos
2�‘k
P

� ’�I�
ik sin

2�‘k
P



: (4)

The 2M components f’�R�
ik ; ’

�I�
ik g and the zero-frequency

component �’i are sampled by the Metropolis algorithm.
Monte Carlo autocorrelation times can be significantly
reduced by alternating Metropolis moves with microca-
nonical over-relaxed ones [17,25]. However, the real im-
provement in simulation efficiency arises from the fact that
the move amplitudes can be independently chosen and
dynamically adjusted for each Fourier component, thus
correctly sampling also strongly fluctuating paths
[23,26]. Eventually, the finite-P overall action S� SI reads
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where the ‘‘kinetic‘‘ matrix Tijk �
P2t
g2 sin

2 �k
P 	

���
ij � �k	�0�ij

and the Josephson interaction term is to be expressed using
the expansion (4): note that it does not burden the simula-
tion as the f’i‘g are stored and just updated in the compo-
nent to be moved, at variance with the integral appearing in
standard Fourier PIMC algorithms [27]. We performed an
extensive set of simulations involving L� L square latti-
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FIG. 2 (color online). Temperature behavior of the helicity
modulus ��t�, on the 8� 8 lattice and P! 1, for g � 3:4
and different dissipation strengths, showing that with rising �
the reentrant behavior disappears and ��t� becomes monotonic
for � * 0:2.
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FIG. 3 (color online). Finite-size data (L � 24) for � (top
panel) and �2’ (bottom panel) vs �, at t � 0:05 and g � 5, for
different values of P. Inset: 1=P2 extrapolation of �2’.
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FIG. 4 (color online). Finite-size data (L � 24) for � vs �, at
t � 0:05 and g � 10, for different values of P as in Fig. 3. Inset:
��t� for � � 0:55 (circles) and � � 0:50 (squares) for L � 12
and P � 201. The straight dotted line in the inset marks the
universal-jump value 2t=�.
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ces with linear sizes up to L � 48 and Trotter numbers up
to P � 201, setting � � 0:01.

Our main results concern the phase diagram in the �t; g�
plane for different values of the dissipation strength �, and
are summarized in Fig. 1; the data points were obtained for
P � 101 as in Ref. [17] by fitting the finite-size scaling
relation for the helicity modulus (or stiffness) per island
� � �L2EJ��1�@2F=@q2�q�0 , defined as the response of
the free energy F�q� under twisting the boundary condi-
tions as ’i ! ’i � q � i.

As shown in Fig. 1, in addition to generally stabilizing
the S phase, dissipation hinders the mechanism causing the
reentrance. However, the reentrance persists for small val-
ues of � and only a finite value � * 0:2 restores a mono-
tonic critical line. The persistence of a reentrant normal
phase for � � 0:15 is illustrated in the inset of Fig. 1,
where the thermodynamic helicity modulus, as obtained
through a systematic finite-size scaling analysis, is plotted
as a function of the quantum coupling: at g � 3:5 it ap-
pears that � keeps a finite value for t � 0:20, while it
vanishes for t � 0:05, thus signaling that the established
phase coherence disappears again at low temperature.

It is interesting to see how the temperature behavior of
��t� changes with � in the region of the reentrance. In
Fig. 2 several finite-lattice data for g � 3:4 show that rising
� removes the reentrance to disorder at low temperature, as
if g were decreased [17]. From these data one can again
roughly estimate that the threshold where the reentrance
disappears is at � ’ 0:2.

Further increasing �, the critical line in Fig. 1 progres-
sively changes its curvature and an inflexion point appears
for � * 0:4, signaling the incipient stabilization of a low-
temperature S phase for any value of the quantum cou-
pling, as we argue below. In order to address this important
issue, we study the dependence on � of the helicity modu-
lus and related quantities at higher values of g, namely g �
5 and g � 10, and at a fixed low temperature t � 0:05. In
Fig. 3 we report the helicity modulus and the ‘‘pure-
15700
quantum’’ spread of the phase difference between neigh-
boring islands [17,28], namely �2’ � h�’id�u� � �’id�

2i,
for g � 5 and different Trotter numbers including the
extrapolation to P! 1. For increasing dissipation, �
remains zero in an interval and then, around a crossover
value � ’ 0:3, it abruptly starts to increase; for slightly
larger � the critical curve tc�g; �� is hence expected to
cross the point �g � 5; t � 0:05�. The crossover is clearly
connected with the quenching of the pure-quantum phase
fluctuations (lower panel of Fig. 3). Just at the crossover,
the PIMC data for �2’ display the phenomenon of a mark-
edly weaker convergence with P (see inset), signaling that
fluctuations of high Matsubara modes become significant:
this may reflect the proximity to a phase transition mainly
driven by quantum fluctuations, which are in turn modu-
lated by the dissipation.

Since at g � 5 the system displays a BKT transition for
� * 0:3, a much larger coupling is required to check
whether � � �c � 1=2 in fact ensures low-t ordering.
We therefore performed simulations for quantum coupling
as large as g � 10, as reported in Fig. 4. Again a crossover
1-3



FIG. 5 (color online). Zero-t phase diagram. Squares: esti-
mates of gc from the data reported in Fig. 1. The dashed line
extrapolates them to the expected behavior of gc���. Full and
open circles: N and S phases, respectively, as observed experi-
mentally [9]. The reentrant behavior occurs in the shadowed
region.
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of �, signaling the proximity of the BKT critical line,
shows up at � ’ 0:6: as t is still finite, this value is only
an upper bound for �c. Indeed, as shown in the inset, the
transition occurs at low t also for � � 0:5. Our results are
therefore consistent with �c � 1=2, in agreement with
early predictions [13–15]. In addition, the reentrance dis-
played at � � 0 disappears well before �c � 1=2, so there
is no evident connection between the two phenomena.

The quantum phase transition occurs at g � gc���
where the critical temperature tc�g; �� vanishes: assuming
that �c � 1=2 and using the data reported in Fig. 1 to
estimate gc for some values of �, we can draw the line of
quantum critical points gc��� that separates the S and N
phase in the ��; g� plane. Figure 5 evidences that the
resulting zero-t phase diagram is in remarkable agreement
with the experimental findings by Takahide et al. [9].

In conclusion, we have obtained the quantitative phase
diagram of a resistively shunted 2D Josephson junction
array. The reentrant low-T normal phase persists in a small
but finite range of values of � & 0:2 (i.e., RS * 32 k )
and 3:2 & g & 3:5. This explains why the reentrance was
not detected in the shunted JJA samples of Ref. [9], whose
resistances RS & 18 k and quantum coupling values
(g � 2:2, 4.2, 5.5, and 9.4) lie outside the above range.
For � > �c � 1=2 we observe the SN transition at finite t
for very large coupling, thus validating the prediction that
above �c the S phase is always stabilized. The reentrance is
the most dramatic signature of the strong nonlinear quan-
tum fluctuations characterizing the quantum critical re-
gion. Our results point out that the latter exists not only
at T � 0 and � � 0, but also at finite temperature and
dissipation. Dissipation turns out to be a fundamental
ingredient for future investigations since it allows one to
tune (both in theory and in experiment) the system in and
out of quantum criticality.
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[16] J. Choi and J. V. José, Phys. Rev. Lett. 62, 1904 (1989).
[17] L. Capriotti, A. Cuccoli, A. Fubini, V. Tognetti, and R.

Vaia, Phys. Rev. Lett. 91, 247004 (2003).
[18] V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 907 (1970) [Sov.

Phys. JETP 32, 493 ( 1971)]; J. M. Kosterlitz and D. J.
Thouless, J. Phys. C 6, 1181 (1973).

[19] P. Olsson, Phys. Rev. Lett. 73, 3339 (1994); M.
Hasenbusch and K. Pinn, J. Phys. A 30, 63 (1997); S. G.
Chung, Phys. Rev. B 60, 11 761 (1999).

[20] A. Cuccoli, A. Fubini, V. Tognetti, and R. Vaia, Phys.
Rev. B 61, 11 289 (2000).

[21] C. Rojas and J. V. José, Phys. Rev. B 54, 12 361 (1996);
A. I. Belousov and Yu. E. Lozovik, Solid State Commun.
100, 421 (1996).

[22] K. B. Efetov, Zh. Eksp. Teor. Fiz. 78, 2017 (1980) [Sov.
Phys. JETP 51, 1015 (1980)]; E. Šimánek, Phys. Rev. B
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